# C Program to solve equations using Jordan elimination method.

Write a C Program to solve equations using Jordan elimination method.
Gauss-Jordan elimination method is used to solve the linear equations. In this method, We find the inverse matrix of the coefficients of equations by elementary row operations. Read more about C Programming Language . and read the C Programming Language (2nd Edition) by K and R.

`/************************************************************ You can use all the programs on  www.c-program-example.com* for personal and learning purposes. For permissions to use the* programs for commercial purposes,* contact [email protected]* To find more C programs, do visit www.c-program-example.com* and browse!* *                      Happy Coding***********************************************************/#include<stdio.h>#include<conio.h>void solution( int a[][], int var );int main(){        int a[ 20 ][ 20 ], var, i, j, k, l;    clrcsr();    printf( "nEnter the number of variables:n" );    scanf( "%d", &var );        for ( i = 0;i < var;i++ )    {        printf( "nEnter the equation%d:n", i + 1 );                for ( j = 0;j < var;j++ )        {            printf( "Enter the coefficient of  x%d:n", j + 1 );            scanf( "%d", &a[ i ][ j ] );        }                printf( "nEnter the constant:n" );        scanf( "%d", &a[ i ][ n ] );    }        solution( a, var );    return 0;}void solution( int a[ 20 ][ 20 ], int var ){    int k, i, l, j;        for ( k = 0;k < var;k++ )    {        for ( i = 0;i <= var;i++ )        {            l = a[ i ][ k ];                        for ( j = 0;j <= var;j++ )            {                if ( i != k )                a[ i ][ j ] = a[ k ][ k ] * a[ i ][ j ] – l * a[ k ][ j ];            }        }    }        printf( "nSolutions:" );        for ( i = 0;i < n;i++ )    {        printf( "nTHE VALUE OF x%d IS %fn", i + 1, ( float ) a[ i ][ n ] / ( float ) a[ i ][ i ] );    }    }`
`Read more Similar C ProgramsLearn C ProgrammingRecursionNumber System`

You can easily select the code by double clicking on the code area above.